شرکت دانش پژوه بشیر

هوش مصنوعی و تاثیرات آن بر علم پزشکی

هوش مصنوعی (AI) اصطلاحی است که برای توصیف استفاده از رایانه و فناوری برای شبیه‌سازی رفتار هوشمند و تفکر انتقادی قابل مقایسه با یک انسان استفاده می‌شود. جان مک کارتی برای اولین بار در سال ۱۹۵۶ اصطلاح هوش مصنوعی را به عنوان علم و مهندسی ساخت ماشین های هوشمند توصیف کرد.

فن‌آوری‌های پزشکی هوشمند (یعنی مبتنی بر هوش مصنوعی) با اشتیاق عموم مردم مواجه شده‌اند، تا حدی به این دلیل که یک مدل پزشکی کامل (پیش‌بینی‌کننده، پیشگیرانه، شخصی‌سازی شده، و مشارکتی) و در نتیجه استقلال بیمار را، به روش‌هایی که امکان‌پذیر نیست، ممکن می‌سازد؛برای مثال، گوشی‌های هوشمند به ابزاری برای پر کردن و توزیع یک پرونده الکترونیکی سلامت شخصی، نظارت بر عملکردهای حیاتی با حسگرهای زیستی و کمک به دستیابی به انطباق درمانی بهینه تبدیل می‌شوند.

هوش مصنوعی در پزشکی را می توان به دو زیر گروه تقسیم کرد: مجازی و فیزیکی.

بخش مجازی از کاربردهایی مانند سیستم های پرونده الکترونیک سلامت تا راهنمایی مبتنی بر شبکه عصبی در تصمیم گیری های درمانی را شامل می شود.

بخش فیزیکی مربوط به روبات هایی است که در انجام جراحی ها، پروتزهای هوشمند برای افراد معلول و مراقبت از سالمندان کمک می کنند.

کاربرد ربات در هوش مصنوعی

  1. قلبی-عروقی
  2. تشخیص فیبریلاسیون دهلیزی
  3. پیشبینی ریسک بیماری های قلبی-عروقی
  4. تست های علملکرد ریوی
  5. کنترل تست های قند خون
  6. پیشبینی کاهش GFR و بیماری های کلیوی
  7. تصویر برداری تشخیصی در مشکلات گوارشی
  8. نورولوژی(مغز و اعصاب)
  9. تشخیص صرع و مانیتور نشنج
  10. ارزیابی راه رفتن ، وضعیت بدن و لرزش
  11. تشخیص سرطان در هیستوپاتولوژی
  12. تصویربرداری پزشکی و اعتبار سنجی فناوری های مبتنی بر هوش مصنوعی

 

هوش مصنوعی در تشخیص بیماری

برخلاف انسان ها، هوش مصنوعی هرگز نیازی به خواب ندارد. مدل‌های یادگیری ماشینی را می‌توان برای مشاهده علائم حیاتی بیمارانی که مراقبت‌های ویژه دریافت می‌کنند و در صورت افزایش عوامل خطر خاص به پزشکان هشدار می دهند به کار گرفت.

در حالی که دستگاه‌های پزشکی مانند مانیتورهای قلب می‌توانند علائم حیاتی را ردیابی کنند، هوش مصنوعی می‌تواند داده‌های آن دستگاه‌ها را جمع‌آوری کند و به دنبال شرایط پیچیده‌تری مانند سپسیس(عفونت خون) باشد.

 

درمان شخصی سازی شده

پشتیبانی از پزشکی دقیق با کمک هوش مصنوعی مجازی آسان تر می شود. از آنجایی که مدل‌های هوش مصنوعی می‌توانند اولویت‌ها را یاد بگیرند و حفظ کنند، هوش مصنوعی این پتانسیل را دارد که توصیه‌های بی‌درنگ شخصی ‌سازی شده را در تمام ساعات شبانه‌روز به بیماران ارائه دهد. به جای اینکه هر بار اطلاعات را با یک فرد جدید تکرار کنید، یک سیستم مراقبت های بهداشتی می تواند به بیماران دسترسی شبانه روزی به یک دستیار مجازی مجهز به هوش مصنوعی را ارائه دهد که می تواند به سوالات بر اساس تاریخچه پزشکی، ترجیحات و نیازهای شخصی بیمار پاسخ دهد.

هوش مصنوعی در تصویربرداری پزشکی

هوش مصنوعی در حال حاضر نقش برجسته ای در تصویربرداری پزشکی ایفا می کند. تحقیقات نشان داده است که هوش مصنوعی با استفاده از شبکه های عصبی مصنوعی می تواند به اندازه رادیولوژیست های انسانی در تشخیص علائم سرطان سینه و همچنین سایر شرایط موثر باشد. علاوه بر کمک به پزشکان در تشخیص علائم اولیه بیماری، هوش مصنوعی همچنین می‌تواند با شناسایی بخش‌های حیاتی از تاریخچه بیمار و ارائه تصاویر مربوطه به آنها، تعداد خیره‌کننده تصاویر پزشکی را که پزشکان باید پیگیری کنند، را فراهم کند.

کارایی کارآزمایی بالینی

زمان زیادی در طول آزمایش‌های بالینی صرف اختصاص کدهای پزشکی به نتایج بیمار و به‌روزرسانی مجموعه داده‌های مربوطه می‌شود. هوش مصنوعی می‌تواند با ارائه جستجوی سریع‌تر و هوشمندانه‌تر برای کدهای پزشکی به سرعت بخشیدن به این فرآیند کمک کند.

رشد سریع در حوزه دارویی

کشف دارو اغلب یکی از طولانی ترین و پرهزینه ترین بخش های توسعه دارو است. هوش مصنوعی می‌تواند به کاهش هزینه‌های توسعه داروهای جدید به دو صورت کمک کند:

ایجاد طرح‌های دارویی بهتر و یافتن ترکیب‌های دارویی نویدبخش. با هوش مصنوعی، می توان بر بسیاری از چالش های کلان داده که صنعت علوم زیستی با آن مواجه است غلبه کرد.

 

مزایای هوش مصنوعی در پزشکی

۱-مراقبت آگاهانه از بیمار

۲-کاهش خطا

۳-کاهش هزینه های مراقبت

۴-افزایش تعامل پزشک و بیمار

 

آیا هوش مصنوعی به طور کامل جانشین پزشکان خواهد شد؟

پاسخ دکتر اریک توپول به این سوال منفی است. او نظرش را  در کتاب “deep medicine” با مقایسه تکنولوژی‌های به کار رفته در ماشین‌های خودران با استفاده‌های هوش مصنوعی در پزشکی بدین شکل بیان می‌کند: مهندسان مشغول در حوزه خودرو‌های خودران 5 سلسله مراتب از خودران کردن خودرو ها را ایجاد کرده‌اند:

سطح۱: کامپیوتر و انسان در کنار هم خودرو را کنترل می‌کنند مثال این حالت دستیار پارک و ترمز اضطراری است.

سطح۲: کامپیوتر عملا کنترل خودرو را در دست دارد اما در شرایط پیچیده‌تر و بحرانی وظیفه هدایت خودرو توسط انسان انجام می‌شود.

سطح۳: در این حالت کامپیوتر خودرو را کنترل می‌کند و توانایی مدیریت شرایط پیچیده را نیز دارد و انسان تنها نقش پشتیبانی دارد.

سطح۴: در این حالت خودرو در اکثر شرایط نیازی به پشتیبانی انسان ندارد و کنترل خودرو در اختیار کامپیوتر است.

سطح۵: نقش انسان به طور کامل حذف شده و تحت هیچ شرایطی نیازی به مداخله انسان نیست و فرمان می‌تواند حذف شود.

از نظر دکتر توپول رسیدن به مرحله ۴ در حوزه‌ی پزشکی بر خلاف خودروهای خودران  دور از ذهن به نظر می‌رسد چرا که اگر چه هوش مصنوعی ‌می‌تواند روندهایی مشخص مثل تشخیص یک ضایعه پوستی یا تشخیص یک بیماری از طریق الگوریتم‌های مشخص را بهتر از انسان انجام دهد اما در حوزه‌ی پزشکی به صورت کلی لزوم نظارت انسان غیر قابل حذف است. در حوزه‌ی پزشکی پیشرفت‌هایی مشابه سطح ۳ و سطح ۲ در مثال بالا بسیار کمک کننده خواهند بود مثل تشخیص بیماری و ارائه راهکارهای درمان در موارد مشخص.

 

چه چیزی در آینده از پزشکان انتظار می‌رود؟

پزشکان در آینده به مهارت‌های زیادی جهت به کار بردن مناسب هوش مصنوعی در کار خود نیازمند خواند بود؛ علاوه بر فهم اصول پزشکی، به دانش کافی در مفاهیم ریاضی، اصول هوش مصنوعی، علم داده و مسائل اخلاقی و حقوقی مرتبط نیاز خواهد بود. این مهارت‌ها به پزشکان کمک خواهند کرد که از داده‌های منابع مختلف بهره ببرند، بر ابزار مبتنی بر هوش مصنوعی نظارت کنند و مواردی را که احتمال می‎‌رود الگوریتم‌ها دقت کافی نداشته باشند را شناسایی کنند. علاوه‌ بر این مهارت‌های ارتباطی و لیدرشیپ و هوش هیجانی اهمیت دو چندانی خواهند یافت.

در آخر

هوش مصنوعی وعده می دهد که علم پزشکی را به روش هایی تغییر دهد، اما بسیاری از کاربردهای عملی آن هنوز در مراحل اولیه خود هستند و نیاز به بررسی و توسعه بهتر دارند. متخصصان پزشکی نیز برای ارائه بهتر مراقبت های بهداشتی به جامعه باید خود را با این پیشرفت ها همگام کنند و با آنها سازگارشوند.

دیدگاهتان را بنویسید

نشانی ایمیل شما منتشر نخواهد شد. بخش‌های موردنیاز علامت‌گذاری شده‌اند *